### **EINLEITUNG**

Auf den folgenden Seiten sind Leistungstabellen und -diagramme dargestellt, so daß Sie erfahren können, welche Leistungen Sie von Ihrem Flugzeug unter verschiedenen Bedingungen erwarten können und so daß Sie andererseits eine eingehende und hinreichend genaue Flugplanung durchführen können. Die Werte in den Tabellen und Diagrammen wurden aus den Ergebnissen von Erprobungsflügen mit einem in gutem Betriebszustand befindlichen Flugzeug und Triebwerk errechnet, wobei durchschnittliche Pilotenfähigkeiten zugrundegelegt wurden.

Es ist zu beachten, daß die Leistungsangaben in den Diagrammen für Reichweite und Flugdauer eine Kraftstoffreserve für 45 Minuten bei der entsprechenden Triebwerkleistung einschließen. Die Werte für den Kraftstoffdurchfluß im Reiseflug basieren auf der Einstellung für empfohlenes armes Gemisch. Einige unbestimmbare Variablen, wie z.B. die Art der Verarmung des Gemisches, die Eigenschaften der Kraftstoffmessung, der Betriebszustand des Triebwerkes und des Propellers sowie Turbulenz können Änderungen der Reichweite und Flugdauer von 10% und mehr bewirken. Deshalb ist es wichtig, bei der Berechnung der für den jeweiligen Flug erforderliche Kraftstoffmenge alle verfügbaren Informationen auszuwerten und eine konservative Flugplanung durchzuführen.

# ANWENDUNG DER LEISTUNGSTABELLEN UND -DIAGRAMME

Leistungsdaten sind entweder in Tabellen oder Diagrammen dargestellt, um den Einfluß der unterschiedlichen Variablen darzustellen. Ausreichend detaillierte Informationen sind in den Tabellen vorhanden, so daß auf der sicheren Seite liegende Werte ausgewählt und benutzt werden können, um eine bestimmte Leistung mit einer hinreichenden Genauigkeit zu berechnen.

# **FLUGPLANUNGSBEISPIEL**

Das folgende Flugplanungsbeispiel benötigt Informationen aus verschiedenen Tabellen und Diagrammen, um die Leistungsdaten für einen typischen Flug zu berechnen. Folgende Daten sind schon bekannt:

| Flugzeugk | onfiguration: |
|-----------|---------------|
|-----------|---------------|

| Abflugmasse                          | 1111 kg |
|--------------------------------------|---------|
| Ausfliegbare Kraftstoffmenge         | 201 I   |
| Startbedingungen:                    |         |
| Platzdruckhöhe                       | 1500 ft |
| Temperatur                           | 28°C    |
| Windkomponente entlang der Startbahn | 12 kts  |
| Gegenwind                            |         |
| Bahnlänge                            | 1070 m  |

Reiseflugbedingungen:

| Gesamtflugstrecke | 320 NM  |
|-------------------|---------|
| Druckhöhe         | 5500 ft |
| Temperatur        | 20°C    |

Voraussichtlicher Streckenwind 10 kts Gegenwind

Landebedingungen

| Platzdruckhöhe | 2000 ft       |
|----------------|---------------|
| Temperatur     | 25°C          |
| Bahnlänge      | <b>9</b> 15 m |

#### STARTSTRECKE

Für die Ermittlung der Startstrecke ist Abb. 5-5 zu verwenden, wobei zu berücksichtigen ist, daß die angegebenen Werte für das Kurzstartverfahren gelten. Auf der sicheren Seite liegende Werte erhält man, in dem in der Spalte bzw. Zeile mit dem nächsthöheren Massen-, Höhen- und Temperaturwert abgelesen wird. So sind z.B. beim vorliegenden Flugplanungsbeispiel die Startstreckenangaben für eine Abflugmasse von 1111 kg, eine Druckhöhe von 2000 ft und eine Temperatur von 30°C anzuwenden. Man erhält folgendes Ergebnis:

Startrollstrecke 388 m Startstrecke über 15 m Hindernis 700 m

Diese Werte liegen eindeutig innerhalb der verfügbaren Startbahnlänge. Es kann jedoch zur Berücksichtigung des Windeinflusses noch eine Korrektur gemäß Anmerkung 3 der Startstreckentabelle durchgeführt werden. Bei einem Gegenwind von 12 kts ist die Startstrecke um einen Korrekturwert von.

 $\frac{12 \text{ kts}}{9 \text{ kts}} \times 10\% = 13\%$ zu verringern.

Dieses resultiert in den folgenden Entfernungen, berichtigt für Wind:

| Startrollstrecke, kein Wind       | 388  | m |
|-----------------------------------|------|---|
| Verringerung der Startrollstrecke | - 51 | m |
| (388 m x 13%)                     |      |   |
| Berichtigte Startrollstrecke      | 337  | m |

| Startstrecke über 15 m Hindernis, kein Wind  | 700 m  |
|----------------------------------------------|--------|
| Verringerung der Startstrecke                | - 91 m |
| (700 m x 13%)                                |        |
| Berichtigte Startstrecke über 15 m Hindernis | 609 m  |

### REISEFLUG

Der Reiseflug ist unter Berücksichtigung der Flugdauer, der Höhenwinde und der Flugleistungen zu wählen. Für das vorliegende Flugplanungsbeispiel wurden typische Werte für Reiseflughöhe und voraussichtlichen Streckenwind verwendet. Bei der Wahl der Triebwerkleistungseinstellungen für den Reiseflug müssen jedoch mehrere Punkte berücksichtigt werden. Dazu gehören die in Abb. 5-8 dargestellten Reiseleistungsdaten, das Reichweitendiagramm in Abb. 5-9 und das Flugdauerdiagramm in Abb. 5-10.

Das Reichweitendiagramm gibt die Beziehung zwischen Triebwerkleistung und Reichweite wieder. Niedrigere Leistungseinstellungen ergeben beträchtliche Kraftstoffeinsparungen und eine größere Reichweite. Für dieses Flugplanungsbeispiel wurde eine Reiseleistung von ca. 65% verwendet.

Eine Höhe von 6000 ft und eine Temperatur von 20°C über Standardtemperatur werden für Abb. 5-8, Reiseleistungsdiagramm, angenommen, da diese Werte der geplanten Höhen und der zu erwartenden Temperatur am nächsten liegen. Die ausgewählte Motordrehzahl beträgt 2200 1/min. Folgende Werte werden dann ermittelt:

| Leistung                         | 64%      |
|----------------------------------|----------|
| Wahre Geschwindigkeit            | 109 kts  |
| Kraftstoffdurchfluß im Reiseflug | 27,6 l/h |

#### **ERFORDERLICHE KRAFTSTOFFMENGE**

Die gesamte für den Flug erforderliche Kraftstoffmenge kann anhand der Leistungsangaben in den Abbildungen 5-7 und 5-8 berechnet werden. Für das vorliegende Flugplanungsbeispiel ist aus Abb. 5-7 ersichtlich, daß für einen normalen Steigflug von 2000 ft auf 6000 ft 5.3 I Kraftstoff erforderlich sind. Die während des Steigfluges zurückgelegte Strecke beträgt 10 NM. Diese Werte Standardtemperatur und sind für die Fluoplanungszwecke ausreichend genau. Es kann jedoch zur Berücksichtigung der Temperatur eine Korrektur gemäß Anmerkung in der Steigflugtabelle durchgeführt werden. Eine Abweichung von der Standardtemperatur wirkt sich ungefähr so aus, daß infolge der geringen Steiggeschwindigkeit die Steigzeit, Kraftstoffmenge und Steigstrecke für je 10°C Erhöhung gegenüber Standardtemperatur um 10% vergrößert werden. Wenn man beim vorliegenden Beispiel von 13°C über der Standardtemperatur (28°C - 15°C) ausgeht, ergibt sich folgende Korrektur:

Unter Einbeziehung dieses Faktors läßt sich der voraussichtliche Kraftstoffbedarf wie folgt berechnen:

| Kraftstoffverbrauch für den Steigflug           | 5,3 1  |
|-------------------------------------------------|--------|
| Erhöhung wegen Abweichung von der Standard-     |        |
| temperatur (5,3 x 13%)                          | 0,75 I |
| ,                                               |        |
| Berichtigter Kraftstoffbedarf für den Steigflug | 6,05 l |

Bei Anwendung des gleichen Verfahrens für die Korrektur der Steigflugstrecke ergeben sich 12 NM. (10 NM aus dem Diagramm + 1.2 NM Korrektur wegen Abweichung von der Standardtemperatur = 11,2 NM. Aufgerundet auf 12 NM.)

Die resultierende Reiseflugstrecke ist:

| Gesamtstrecke    | 320 NM     |
|------------------|------------|
| Steigflugstrecke | <br>-12 NM |
|                  |            |
| Reiseflugstrecke | <br>308 NM |

Bei dem zu erwartenden Gegenwind von 10 kts läßt sich die Geschwindigkeit über Grund für den Reiseflug wie folgt berechnen:

109 kts -10 kts

99 kts

Folglich beläuft sich die für den Reiseflugteil der Flugstrecke erforderliche Zeit auf:

$$\frac{308 \text{ NM}}{99 \text{ kts}} = 3.1 \text{ Stunden}$$

Die für den Reiseflug erforderliche Kraftstoffmenge beträgt:

3,1 Stunden x 27,6 l/h = 85,6 l

Die Kraftstoffmenge für eine Reserve von 45 Minuten beträgt:

$$\frac{45}{60}$$
 X 27,6 l/h = 20,7 l

Der gesamte errechnete Kraftstoffbedarf ergibt sich wie folgt:

| Anlassen, Rollen und Startlauf | 4,2    |
|--------------------------------|--------|
| Steigflug                      | 6,1 I  |
| Reiseflug                      | 85,6 I |
| Reserve                        | 20,7 l |
| Gesamt Kraftstoffbedarf        | 116.6  |

Während des Fluges kann dann anhand von Überprüfungen der Geschwindigkeit über Grund eine genauere Berechnungsgrundlage zur Ermittlung der für den Reiseflug erforderlichen Zeit und der zugehörigen Kraftstoffmenge gewonnen werden, so daß der Flug mit ausreichender Kraftstoffreserve beendet werden kann.

# MAXIMALE STEIGGESCHWINDIGKEIT BEI EINER ABFLUGMASSE VON 1111 KG

Bedingungen:

Klappen eingefahren Vollgas

| Druck-<br>Höhe | Steiggesch-        | Steigrate ft/min |     |      |      | Steigrate |  |
|----------------|--------------------|------------------|-----|------|------|-----------|--|
| ft             | windigkeit<br>KIAS | -20°C            | 0°C | 20°C | 40°C |           |  |
| S.L.           | 79                 | 830              | 770 | 705  | 640  |           |  |
| 2000           | 77                 | 720              | 655 | 595  | 535  |           |  |
| 4000           | 76                 | 645              | 585 | 525  | 465  |           |  |
| 6000           | 74                 | 530              | 475 | 415  | 360  |           |  |
| 8000           | 72                 | 420              | 365 | 310  | 250  |           |  |
| 10.000         | 71                 | 310              | 255 | 200  | 145  |           |  |
| 12.000         | 69                 | 200              | 145 |      |      |           |  |

#### ANMERKUNG:

1. Gemisch über 3000 ft verarmen, um maximale Drehzahl zu erzielen

# FÜR DEN STEIGFLUG ERFORDERLICHE ZEIT, KRAFTSTOFFVERBRAUCH UND STRECKE

Bedingungen: Klappen eingefahren Vollgas Standardtemperatur

| Druck-     | TEMP       | Steig-             | Steig- Vom MSL aus  |             |               | us             |
|------------|------------|--------------------|---------------------|-------------|---------------|----------------|
| Höhe<br>ft | TEMP<br>°C | geschwind.<br>KIAS | Steigrate<br>ft/min | ZEIT<br>MIN | Kraftst.<br>I | Entfern.<br>NM |
| S.L.       | 15         | 79                 | 720                 | 0           | 0,0           | 0              |
| 1000       | 13         | 78                 | 670                 | 1           | 0,15          | 2              |
| 2000       | 11         | 77                 | 625                 | 3           | 2,65          | 4              |
| 3000       | 9          | 76                 | 575                 | 5           | 4,54          | 6              |
| 4000       | 7          | 76                 | 560                 | 6           | 5,68          | 8              |
| 5000       | 5          | 75                 | 515                 | 8           | 6,81          | 11             |
| 6000       | 3          | 74                 | 465                 | 10          | 7,94          | 14             |
| 7000       | 1          | 73                 | 415                 | 13          | 9,46          | 17             |
| 8000       | -1         | 72                 | 365                 | 15          | 8,36          | 21             |
| 9000       | -3         | 72                 | 315                 | 18          | 12,87         | 25             |
| 10.000     | -5         | 71                 | 270                 | 22          | 15,14         | 29             |
| 11.000     | -7         | 70                 | 220                 | 26          | 17,41         | 35             |
| 12.000     | -9         | 69                 | 170                 | 31          | 20,44         | 43             |

# Anmerkungen:

- Für Anlassen, Rollen und Start ist eine Kraftstoffmenge von 4,2 I hinzuzurechnen
- 2. Gemisch verarmt über 3000 ft für maximale Drehzahl
- Für je 10°C über der Standardtemperatur sind die Werte für Zeit, Kraftstoffverbrauch und Steigstrecke um 10% zu vergrößern
- 4. Die angegebenen Strecken gelten bei Windstille

Abb. 5-7 Für den Steigflug erforderliche Zeit, Kraftstoffverbrauch und Strecke

## REISELEISTUNG

Bedingungen:

Abflugmasse 1111 kg

Empfohlenes armes Gemisch bei allen Höhen (siehe Kapitel 4, Reiseflug)

| Druck<br>Höhe | 1/min | 20°C UNTER<br>STANDARDTEMP |      |      | STANDARD<br>TEMPERATUR |      |      | 20°C ÜBER<br>STANDARDTEMP |      |      |
|---------------|-------|----------------------------|------|------|------------------------|------|------|---------------------------|------|------|
| ft            |       | %                          | KTAS | L/H  | %                      | KTAS | L/H  | %                         | KTAS | L/H  |
| 2000          | 2250  |                            |      |      | 79                     | 115  | 34,1 | 74                        | 114  | 32,2 |
|               | 2200  | 79                         | 112  | 34,4 | 74                     | 112  | 32,2 | 70                        | 111  | 30,3 |
|               | 2100  | 69                         | 107  | 29,9 | 65                     | 106  | 28,4 | 62                        | 105  | 26,9 |
|               | 2000  | 61                         | 101  | 26,5 | 58                     | 99   | 25,0 | 55                        | 97   | 24,2 |
|               | 1900  | 54                         | 94   | 23,5 | 51                     | 91   | 22,3 | 50                        | 89   | 22,0 |
|               |       |                            |      |      |                        |      |      |                           |      |      |
| 4000          | 2300  |                            |      |      | 79                     | 117  | 34,5 | 75                        | 117  | 32,6 |
|               | 2250  | 80                         | 115  | 34,8 | 75                     | 114  | 32,6 | 70                        | 114  | 30,7 |
| 1             | 2200  | 75                         | 112  | 32,6 | 70                     | 111  | 30,7 | 66                        | 110  | 28,8 |
|               | 2100  | 66                         | 106  | 28,8 | 62                     | 105  | 26,9 | 59                        | 103  | 25,8 |
|               | 2000  | 58                         | 100  | 25,3 | 55                     | 98   | 24,2 | 53                        | 95   | 23,5 |
|               | 1900  | 52                         | 92   | 22,7 | 50                     | 90   | 22,0 | 49                        | 87   | 21,2 |
|               |       |                            |      |      |                        |      |      |                           |      |      |
| 6000          | 2350  |                            |      |      | 80                     | 120  | 34,8 | 75                        | 119  | 32,6 |
|               | 2300  | 80                         | 117  | 34,8 | 75                     | 117  | 32,6 | 71                        | 116  | 30,7 |
|               | 2250  | 76                         | 115  | 29,9 | 71                     | 114  | 30,7 | 67                        | 113  | 29,2 |
|               | 2200  | 71                         | 112  | 30,7 | 67                     | 111  | 29,2 | 64                        | 109  | 27,6 |
|               | 2100  | 63                         | 105  | 27,3 | 60                     | 104  | 26,1 | 57                        | 101  | 25,0 |
|               | 2000  | 56                         | 98   | 24,2 | 53                     | 96   | 23,5 | 52                        | 93   | 22,7 |

#### ANMERKUNG:

 Die hier angegebenenen Reisegeschwindigkeiten gelten für ein mit Radschuhen ausgerüstetes Flugzeug. Verringern Sie die Geschwindigkeiten um 2 kts für Flugzeuge ohne Radschuhe.

Abb. 5-8 Reiseleistung (1 Blatt von 2)

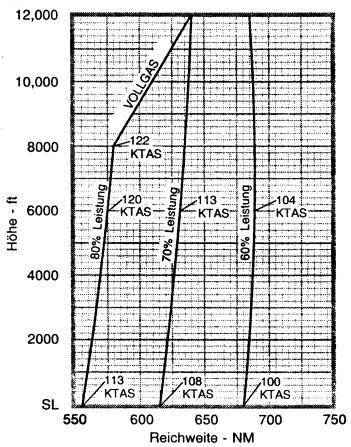
# REISELEISTUNG

Bedingungen:

Abflugmasse 1111 kg

Empfohlenes armes Gemisch bei allen Höhen (siehe Kapitel 4, Reiseflug)

| Druck<br>höhe | 1/min | 20°C UNTER<br>STANDARDTEMP |      |      | STANDARD<br>TEMPERATUR |      |      | 20°C ÜBER<br>STANDARDTEMP |      |      |
|---------------|-------|----------------------------|------|------|------------------------|------|------|---------------------------|------|------|
| ft            |       | %                          | KTAS | L/H  | %                      | KTAS | L/H  | %                         | KTAS | L/H  |
| 8000          | 2400  | -                          |      |      | 80                     | 122  | 34,8 | 76                        | 121  | 32,9 |
|               | 2350  | 81                         | 120  | 35,2 | 76                     | 119  | 32,9 | 71                        | 118  | 31,0 |
|               | 2300  | 76                         | 117  | 32,9 | 71                     | 116  | 31,0 | 68                        | 115  | 29,5 |
|               | 2200  | 68                         | 111  | 29,2 | 64                     | 110  | 27,6 | 61                        | 107  | 26,5 |
|               | 2100  | 60                         | 104  | 26,1 | 57                     | 102  | 25,0 | 55                        | 99   | 24,2 |
|               | 2000  | 54                         | 96   | 23,5 | 52                     | 94   | 22,7 | 51                        | 91   | 22,3 |
|               |       |                            |      |      |                        |      |      |                           |      |      |
| 10.000        | 2350  | 76                         | 119  | 33,3 | 72                     | 118  | 31,0 | 68                        | 117  | 29,5 |
|               | 2300  | 72                         | 116  | 31,4 | 68                     | 115  | 29,5 | 65                        | 113  | 28,0 |
|               | 2250  | 68                         | 113  | 29,5 | 65                     | 112  | 28,0 | 61                        | 109  | 26,8 |
|               | 2200  | 65                         | 110  | 28,0 | 61                     | 108  | 26,5 | 59                        | 105  | 25,4 |
|               | 2100  | 58                         | 102  | 25,0 | 55                     | 100  | 24,2 | 54                        | 97   | 23,5 |
|               | 2000  | 52                         | 94   | 23,1 | 51                     | 91   | 22,3 | 50                        | 88   | 22,0 |
|               |       |                            |      |      |                        |      |      |                           |      |      |
| 12.000        | 2350  | 73                         | 119  | 31,4 | 69                     | 117  | 29,9 | 65                        | 115  | 28,4 |
|               | 2300  | 69                         | 115  | 29,9 | 65                     | 113  | 28,4 | 62                        | 111  | 26,9 |
|               | 2250  | 65                         | 112  | 28,4 | 62                     | 109  | 26,9 | 59                        | 107  | 25,7 |
|               | 2200  | 62                         | 108  | 26,9 | 59                     | 105  | 25,7 | 57                        | 103  | 25,0 |
|               | 2100  | 56                         | 100  | 24,2 | 54                     | 97   | 23,5 | 53                        | 94   | 23,1 |


# Anmerkung:

1. Die hier angegebenenen Reisegeschwindigkeiten gelten für ein mit Radschuhen ausgerüstetes Flugzeug. Verringern Sie die Geschwindigkeiten um 2 kts für Flugzeuge ohne Radschuhe.

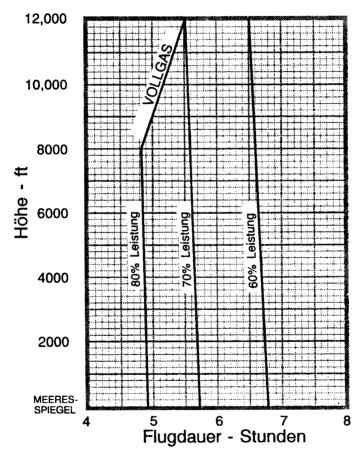
Abb. 5-8 Reiseleistung (2 Blatt von 2)

# REICHWEITE 45 MINUTEN RESERVE 201 L AUSFLIEGBARER KRAFTSTOFF

Bedingungen:
Abflugmasse 1111 kg
Empfohlenes armes Gemisch für den Reiseflug in allen Höhen
Standardtemperatur
Ohne Wind



#### ANMERKUNG:


 In diesem Diagramm sind die für Anlassen, Rollen, Start und Steigflug benötigte Kraftstoffmenge sowie die Steigstrecke berücksichtigt

 Die Leistungen gelten für ein mit Radschuhen ausgerüstetes Flugzeug. Die Radschuhe erhöhen die Reisegeschwindigkeiten um ca. 2 kts.

Abb. 5-9. Reichweite

# FLUGDAUER 45 MINUTEN RESERVE 201L AUSFLIEGBARER KRAFTSTOFF

Bedingungen:
Abflugmasse 1111 kg
Empfohlenes armes Gemisch für den Reiseflug in allen Höhen
Standardtemperatur



#### ANMERKUNG:

 In diesem Diagramm sind die für Anlassen, Rollen, Start und Steigflug benötigte Kraftstoffmenge sowie die Steigzeit berücksichtigt.

Abb. 5-10. Flugdauer